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On the dynamics of carbon nanotubes by taking into consideration the van der Waals forces
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Abstract.In this paper, the bending of the zigzag single-walled nanotube of carbon (10,0) is analyzed by coupling a nonlinear continuum theory to an atomistic theory. The effect of surface van der Waals forces on the binding energies is explained by using the soliton theory. The soliton theory is able to generalize the hinge concept towards a solitonic deformation concept. This concept describes the large inelastic deformations of nanotubes, as well as the mechanism nucleation and the fracture. 
1. introduction

In the last few years there has been a strong interest in one-dimensional nanostructures based on carbon nanotubes. Devices such as field effect transistors, biosensors and IR light emitting diodes have been demonstrated. Carbon nanotubes are considered a leading candidate for replacing conventional CMOS electronics. Carbon nanotubes are used in composition of the polymer hybrid materials that have good elastic properties, piezoresistive sensing, and electrochemical actuation. We note the importance of the smart nanocomposite materials that are strong and selfsensing for structural health monitoring, or selfactuating to improve the performance and efficiency of structures and devices. 

The carbon nanotubes as a quasi-one-dimensional structures were discovered by Iijima [1], Iijima and Ichihashi [2]. The carbon nanotube is one of the most promising building blocks for future development of functional nanostructures (Srivastava, Menon and Cho [3], Gao, Cagin and Goddard [4]). The single-walled carbon nanotubes can be regarded as a rolled-up graphite sheet in cylindrical form. Thess [5] produced crystalline ropes of metallic carbon nanotubes with 100–500 single-walled carbon nanotubes bundled into a two-dimensional triangular lattice. These nanostructures are expected to have remarkable mechanical, electronic and magnetic properties (Ruoff, Qian and liu [6]). 

The bonding in carbon nanotubes is similar, but not identical, to the graphene sheet. To identify the types of SWCNT we refer to rolling up the graphene sheet. The geometric parameter associated with this process is the roll-up vector
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, the armchair form, and for other chiral.

For the interlayer potential we consider the Wang, Tomanek and Bertsch [7] expression based on the local density approximation method
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 is the hard-core repulsion energy, 
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 is the equilibrium distance between two carbon atoms, 
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. The van der Waals force is the interaction between the opposite walls of the nanotube when they approach each other. This force depends on the distance between the atoms. For large distances, the van der Waals force is attractive, but when the separation between the atoms is below the equilibrium distance of 3.42 Å, it becomes strongly repulsive. 

With the increase in the bending angle 
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, the top and bottom parts of the kink get closer to each other, and at a certain stage, the distance between them reaches the equilibrium distance. Upon additional bending, this distance remains unchanged because there are no external normal loads applied on the walls to prevail over the repulsive van der Waals forces. The van der Waals force between atom i and j can be expressed by the Lennard-Jones potential as (Chiroiu, Ştiucă, Munteanu and Donescu [8])
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where 
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 the distance between atoms.

In this paper consider a zigzag carbon nanotube (10,0) of radius 6,26
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, with the Young modulus 4.88 TPa and Poisson coefficient
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. When the external bending moment increases, the tube will locally buckle at
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, a coupled atomistic-continuum theory is applied since the continuum theory is no longer valid. 
2. Fundamental equations

Let us model the nanotube as a thin elastic, homogeneous and isotropic rod of length l, straight and having a circular cross section of radius a
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l in its natural state. External moments fix the ends of the tube. We suppose the rod deforms in space by bending (Munteanu and Donescu [9), Teodorescu, Chiroiu and Munteanu [10], [11]). The rod occupies at time 
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 may be denoted by a rectangular fixed coordinate system 
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. Following the current terminology, we shall call X the material or Lagrange coordinates and x the spatial or Euler coordinates. The origin of these coordinate systems is lying on the central axis of the rod. The motion of the rod carries various material points through various spatial positions. This is expressed by 
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.  We take s to be the coordinate along the central line of the natural state. The orthonormal basis of the Lagrange coordinate system is denoted by
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. These angles determine the orientation of the Euler axes relative to the Lagrange axes 
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The Z-axis coincides with the central axis. The plane 
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intersects the plane (XY) in the nodal line ON. The motion of the rod is described by three vector functions
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The material sections of the rod are identified by the coordinate s. The position vector 
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can be interpreted as the image of the central axis in the Euler configuration. The functions 
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can be interpreted as defining the orientation of the material section s in the Euler configuration. The function 
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, represents the unit tangential vector along the rod. We introduce the strains 
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Since 
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, is orthonormal, there is a vector 
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 that measure the bending of the bar,.such as 
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where 
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 are Euler angles. The exact 3D equilibrium equations of the nanotube with the ends fixed by the external moment 
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where A is the bending stiffness  
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, in the longitudinal direction, the nondimensional curvature 
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where 
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The total energy of the tube 
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and the bending moment 
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 can be written as


[image: image90.wmf]t

L

P=P

,  
[image: image91.wmf]d

d

t

M

P

=

J

,                                            (2.7)
where 
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 is the bending angle. The critical compressive stress 
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where 
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 is the axial load. The deformation decreases the value of the critical bending moment as 
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Thus, the maximum compressive stress is a fraction of the critical compressive stress 
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 is the dimensionless extreme fiber stress. The compressive stress is therefore
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The coupled atomistic theory is an attempt to bridge the length scales in a single seamless model with the aid of the finite element method). The basic idea of the co8upling method is carried forward to dynamics, in that representative atoms are chosen, and a finite element mesh is constructed with these as nodes. All the atoms of a solid are the same species and the mass of each of them is 
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. In the following, atoms in the atomistic region, atoms on the interface, and pseudoatoms in the pad will be denoted by the subscripts 
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 respectively. The transition region is shown schematically in Fig. 2.1. On one side of the transition region is the atomistic region in which every atom is explicitly represented and treated using interatomic potentials. On the other side, there is a FE mesh with its associated nodes in which the nodes sit on atomic lattice sites although not all atom sites are nodal positions. At the interface between the FE nodes and the atoms there is a one-to-one correspondence between atoms and nodes on the FE mesh. Moving away from the interface on the continuum side, the FE nodes become sparse and the corresponding elements become larger (Teodorescu, Dumitriu and Chiroiu [13]). Finally, there is a pad region where pseudoatoms exist on the continuum side of the interface. Some of the pad atoms coincide with the FE nodes while others lie within the elements. The idea of the pad, as a set of atoms that are degrees of freedom that can be separate from the nodes in the FE mesh, is used to take account of the nonlocal interactions between atoms (Curtin and Miller [14]). 
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Fig. 2.1. The atomistic/continuum transition region (after Curtin and Miller [14).

The methods at the atomic-scale is governed by quantum mechanics. The total energy is a function of the all coordinates, which are the electronic degrees of freedom. The energy functional is minimized with respect to the electronic degrees of freedom for fixed coordinates. The force on an individual nucleus is obtained by the derivative of the total energy with respect to the considered coordinate. 

The total atomic energy 
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with 
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 an electron-density dependent embedding energy, 
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The electron density at atom i, 
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 is the superposition of density contributions from each of the neighbours
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. In atomistic case, there is no direct consideration of the continuum concepts of strain or displacement. We follow the motion of individual atoms without reference to their original positions, and the occurred deformations may violate many assumptions about the continuity of deformations. 

3. The solitonic mechanism

Solitons or solitary waves are localized functions with no change in shape. In the mathematics literature the word soliton refers to solitary traveling waves which preserve their identities after a pair-wise collision. The solutions of (2.4) are 
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These equations are valid up to the point of local buckling at 
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. For larger angles, the continuum theory must be coupled with the molecular dynamic theory. When the external bending moment increases, the axial compression in the tube increases too, and when the compressive stress reaches a critical value, the tube will locally buckle. The value of 
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 at the point of local buckling is around 0.14. Once the solitonic mechanism starts, the nanotube becomes a mechanical mechanism and the formulas in the continuum theory is no longer valid..

For 
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, the coupled theory put into evidence a solitonic mechanism of deformation. In according to experiments and molecular dynamics simulations, the pattern of the deformation resembles the soliton mechanism similar to that of a macrotube. A portion of the wall flattens and forms a domain that rotate about a central hinge line. This portion is treated by the molecular dynamic. The remaining part of the tube remains circular although it flattens and decreases its curvature. This part is treated by the continuum theory. In the coupling theory, the total energy will be a function of the all coordinates, which are the electronic degrees of freedom. The energy functional is minimized with respect to the electronic degrees of freedom for fixed coordinates. The force on an individual nucleus is obtained by the derivative of the total energy with respect to the considered coordinate. 

. Upon complete unloading from angles below 110° the nanotube completely recovers. At a very large bending angle of 120°, atomic bonds break and the deformation of the nanotube becomes irreversible. A consequence of the solitonic deformation mechanism is the rippling configuration of the nanotube. For a curvature large enough, our coupled atomistic-continuum analysis leads to a solution corresponding to a rippling configuration. 
4.  Conclusions

The macroscopic theories attempt to model the smaller scale phenomena into effective properties or constitutive laws, but the macroscopic phenomena such as fracture, depend on the details of smaller scale phenomena. On the other hand, the atomistic description does not provide for the determination of macroscopic behaviour, since the higher scale interactions operate to drive large-scale behaviour. 

In this paper, we apply a soliton-atomistic coupled theory for the bending of a zigzag single-walled nanotube of carbon (10,0) analysis. When the external bending moment increases, the axial compression in a (10,0) zigzag nanotube increases too, and when the compressive stress reaches a critical value, the tube will locally buckle at 
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 is the bending angle. For 
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, a solitonic deformation mechanism is starting and a portion of the nanotube becomes to rotate about a central hinge line. For large distances, the van der Waals force is attractive, but when the separation between the atoms is below the equilibrium distance of 3.42 Å, it becomes strongly repulsive. Upon complete unloading from angles below 110° the nanotube completely recovers. At a very large bending angle of 120°, atomic bonds break and the deformation of the nanotube becomes irreversible. 
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