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Abstract:  Using the boundary element method and the pseudospectral method, we investigate the flow of a viscous conducting fluid in a circular pipe under the influence of a transverse magnetic field. For taking into account the influence of the conducting wall of the pipe against the flow, we consider the Navier-Stokes equations and the magnetic induction equation inside the pipe and the magnetic induction equation in the wall and exterior medium. We also employ appropriate boundary and jump conditions. We use the boundary element method and the pseudospectral method for investigating numerically the problem. 
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1. INTRODUCTION 

The study of the magnetohydrodynamic (MHD) problems is very important from practical point of view, having many applications in technique, e.g. power generation, nuclear reactor technology, propulsion devices, electrolysis processes. This article deals with the numerical PS-BEM solution of the equations system that models the  flow  of an incompressible, viscous, electrically conducting fluid in a cylindrical duct under uniform transverse magnetic field. In [1] the equations that describe the flow are reduced to a system of partial differential equations in two variables. One starts from the equation of continuity, Navier-Stokes equations of motion, Maxwell’s equations and Ohm’s law. Under particular assumptions the problem is reduced to a system that involves only the velocity and magnetic field components along the axis of the pipe. In [1] analytical solutions are derived for the case of a pipe with insulating or perfectly conducting walls and particular (circular or rectangular) cross section. In [2] a numerical solution based on boundary element method (BEM) is presented. The numerical results are compared with analytical solution in the case of a pipe with insulating wall. Also, the numerical tests show that the motion is slowing with the increasing of the Hartman’s number. In [3] a finite element solution is given.  Although, it is studied the case of the pipe with a part of the wall being insulator while the other part is perfectly conducting, the problem is also restricted to the fluid domain. In [4] a pseudospectral (PS) discretization is presented. The linear system obtained in the discretization process is solved using the preconditioned GMRES method. The preconditioner is built with the help of finite differences discretization. A practical implementation of the preconditioning based on the application of few multigrid V- cycles is considered. Moreover, the problem is extended to the study of the induction field in the wall domain when it has a particular conductivity and the outer environment is insulator. 

In this article we extend the work presented in [4] to the numerical study of the magnetic field outside the pipe. In this case the outer environment is considered of a particular conductivity.

The remaining part of the article is organized as follow. In section 2 is presented the statement of the problem. In section 3 we recall the discretization process using the PS method for the equations on the domains corresponding to the fluid and the wall. We will also give a short description of the way to impose the conditions on the interface between these two domains. The final part deals with the discretization in the outer domain using boundary element method and the coupling with the PS discretization in the domain corresponding to the wall of the pipe.

2. THE STATEMENT OF THE PROBLEM
We consider a straight cylindrical duct with constant thickness walls of sufficient length, so that the end effects may be neglected. We assume that the fluid flowing through is viscous, incompressible and has electrical permitivity and magnetic permeability close to those of the external space (ε ≈ ε0, μ ≈ μ0).  The relation μ ≈ μ0 is also considered inside the wall of the duct. The non-dimensional magnetic induction and electric field intensity at infinity 
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 are supposed to be perpendicular to the axis of the duct. We assume that the Oz –axis is coincident with the duct axis and the Ox – axis is parallel with the magnetic induction at infinity. We denote by D1the region occupied by the fluid, by D2 the wall region and by D3 the outside region.

The steady magnetofluid dynamics equations in non-dimensional variables are:

 -   The equation of continuity 
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· The Navier – Stokes equations of motion
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· Maxwell’s equations
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· Ohm’s law
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In the above relations we denoted by
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-non-dimensional magnetic induction, 
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 -non-dimensional electric field intensity, 
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-intensity of the electric conducting current, 
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 - non-dimensional pressure, 
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-non-dimensional fluid velocity.

We assume that the fluid motion is due to a pressure gradient constant along the pipe. Therefore we have 
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Moreover we make the assumption, consistent with the continuity equation (1)
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These two assumptions allow us to reduce the problem to the following system of equation



[image: image18.wmf](

)

P

grad

R

R

h

e

=

Ñ

×

+

D

B

B

V

1









(7)



[image: image19.wmf](

)

0

=

Ñ

×

+

D

V

B

B

m

R










(8)

where 
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 is the total pressure. Equation (7) is considered only in the domain 
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 occupied by the fluid, while eq. (8) is considered in the domains 
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.  To these equations we add appropriate boundary and jump conditions. The projection of these equations on the three coordinate axes divides the initial problem into two independent problems. The first one treats the determination of 
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 and it is easy to solve (see [4]). The second problem is to find 
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 depending of x and y variables. We will also use the same notation for the projection of domain 
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 onto xOy plane. Our problem is now modeled by the following system of partial differential equations:
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with the following conditions
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Here 
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3. DISCRETIZATION
The pseudospectral (PS) approximations enjoy the so-called “spectral accuracy” –that is, the convergence rate is restricted solely by the global smoothness of the function to be approximated. In the analytic case the convergence rate is an exponential one. These properties make the PS-method for solving PDE very attractive when the geometry of the domain allows its application. 

We now consider a function u and a set of distinct collocation points 
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where 
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. We denoted by 
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 is called  k-order differentiation matrix. The reader may consult [5] for the formulas that define the entries of this matrix for k=1 or k=2 in the periodic and non-periodic case. The difference between the two cases will be marked by the index P in periodic case and NP otherwise. In the periodic case u is a 
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. For the non-periodic case the reference interval is [-1,1] and the collocation points are defined by 
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The equations (9), (10) and (11) will be discretized by PS method while for the eq. (12) we shall use boundary element method. To use the 1D PS-differentiation formula we first transform the equations on the domains 
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 by passing to polar coordinate. This transformation allows us to work on rectangular domains and construct the PS differentiation matrix associated to the partial differential operators using the tensorial products of two matrices. Passing to polar coordinates 
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 we obtain two rectangular domains.  For the first one 
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 (even number) subintervals of the same length.  Since we want to use the Chebyshev points we need to pass from [0,1] or [1,a] to [-1,1].  From [1,a] we shall pass to [-1,1] using the transform 
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The Laplacian and the partial derivative in respect with x are written in polar coordinates as
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and


 
[image: image81.wmf](

)

(

)

(

)

(

)

(

)

q

q

q

q

q

,

~

sin

,

~

cos

,

r

u

r

r

u

y

x

x

u

¶

¶

-

¶

¶

=

¶

¶







(22)
The grid that we use for approximate solution on 
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 and allows us to reduce the dimension of these matrices giving up to the discretization in 
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In (23) I is the identity matrix of order 
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Matrices 
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In the same way we obtain the matrix associated to the first order partial derivative with respect with x variable
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where “
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” represents the element-by-element product of two matrices of same size. Matrices B and C have all their columns equal to 
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where 
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The rest of the paper presents the boundary element method for discretizing (12). For this purpose we start from the identity 
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deduced from equation (12) and condition(18). In (27) 
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 is the fundamental solution of Laplace equation
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where 
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Relations (29) may be written in compact form 
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The other entries of the matrices H and G are computed making use of Gauss quadrature formula. The interface condition (16) is implicitly satisfied. Condition (17) is discretized as
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After finding the values 
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 where the integrals are approximated by Gauss quadrature formula.

Example.  Figures (1),(2) and (3) show the velocity approximate solution, magnetic induction and magnetic induction along Ox respectively, for the following values of the parameters: 
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Figure 1: Velocity
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Figure 2: Magnetic induction
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Figure 3: Magnetic induction along Ox axis
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