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Abstract:  The paper gives an exact solution to the motion of a celestial body related to another, both orbiting around the same attraction center under the influence of a Keplerian force. The result is a replica for Lawden’s equations of motion, and the approach is completely different. We do not try to linearize the equation of motion by approximating, but solve it and give an exact solution. This is possible due to a vectorial differential regularization introduced, that transforms the non-linear Kepler’s problem into an ordinary second order linear differential equation with constant coefficients. The relative orbital motion is described by exact equations; the only implicit function used being the eccentric anomaly related to a keplerian motion. 

The subject of this paper is of great interest in space engineering, as results from several orbital mechanics papers and books written in the past years. We propose an alternative to the actual approaches that leads to simple and elegant solutions.
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1. INTRODUCTION
A very actual subject is the orbital relative motion. Its applications are very important for space missions like GPS (Global Positioning System) or NASA missions. A new concept in satellite dynamics is the satellite cluster formation flying, with applications in interferometry and Earth observations. Spatial rendez-vous are also relative orbital problems.

The mathematical model used in most papers is the Hill-Clohessy-Wiltshire equations. They are derived from the three-body problem studied by Hill (see [11]) at the end of the 19th century. Clohessy and Wiltshire [4], Lawden [15] use and extend this model in studying the orbital relative motion. Clohessy and Wiltshire begin from the linearized form of the equations that describe the motion in case the reference trajectory is circular, Lawden when the reference trajectory is elliptic. Recent papers ( [1], [2], [3], [10], [12], [13], [22], [25]) use Kepler's equation in non-inertial reference frames in order to give an approximate solution to the same problem.
By introducing a vectorial regularization to Kepler's classic problem described by the Cauchy problem:
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 is the position vector of the body related to the attraction centre, 
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 the gravitational parameter and 
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 the initial moment of time), we will give an exact vectorial solution to the relative orbital motion problem. This solution does not appear in the classic orbital mechanics textbooks ( [17], [19], [20]) nor in the most recent papers.
We remark that two problems rise from Kepler's model: the trajectories and the motion on the trajectories.

Section 2 presents the prime integrals of Kepler's problem: angular momentum and energy conservation, and the Laplace-Runge-Lenz vector. This last prime integral is essential in future considerations in this paper. The solution to the trajectory problem is briefly presented.
Section 3 introduces the vectorial regularization that helps solving eq (1). A new fictive time variable is introduced. The Cauchy problem (1) becomes a linear ordinary differential second order equation with constant coefficients, with explicit solutions in all three cases that may occur. A solution to the motion on the trajectories will be briefly presented.
Based on the previous considerations, Section 4 gives the solution to the orbital relative motion problem. This solution is an essentially different point of view because it offers an exact solution to the non-linear differential equation that describes the motion. All computations are made considering a spherical attraction source and does not involve perturbation factors like oblatness (modeled by J2) or atmospheric drag.

The following denotations will be used:
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where 
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 is an arbitrary vector and 
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 the position vector of the body related to the attraction center.
2. KEPLER'S PROBLEM: PRIME INTEGRALS
All results presented in this paper are introduced only in order to help the future considerations. They are classical Theoretical Mechanics results so the proofs will be skipped. A vectorial solution to the trajectory problem is also presented.
The prime integrals of the Cauchy problem (1) are:
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(angular momentum conservation)
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(energy conservation)
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(the Laplace-Runge-Lenz vector)

2.1. The Trajectories
From Eq (2) it results the trajectory is a plane curve. The vectorial equation of plane 
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 where the trajectory is situated is:
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where F denotes the attraction center.
From Eq (4) it results:
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where 
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 is the semillatus rectum. 

The case 
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The trajectory is a conic with one focus in the attraction center, the eccentricity e and the parameter p. Vector 
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 (also called the vectorial eccentricity) has the direction of the main semi axis, its sense indicates the pericenter of the conic and its magnitude (computed from Eq (4)):
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represents the conic eccentricity. Three cases may occur: 
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 leads to an elliptic trajectory (
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 is the particular case of a circular trajectory), 
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: the trajectory is a parabola; 
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: the trajectory is a hyperbola.
The case 
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From Eq (4) it results the trajectory is rectilinear, having the direction of vector 
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. Depending on the initial conditions and the sign of h defined in Eq (2), the trajectory is bounded or unbounded. The bounded case occurs when the body reaches the attraction point F. A complete study in this case was made in [ ].
2.2. Comments on Kepler's Problem
From Eqs (2) and (4) it results:
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where 
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 is a constant vector. Eq (8) shows that in case 
[image: image26.wmf]0

W¹

r

r

, the velocity hodograph is a circular section. In case 
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 the hodograph is an entire circle, 
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 the hodograph is a circular section.
3. KEPLER'S PROBLEM: A VECTORIAL REGULARIZATION

This section introduces a change of variable that transforms the non-linear Cauchy problem (1) into a linear one. The new time-dependant variable 
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 will be called fictive time. More details about this variable will be offered in each sub case that will occur. Here 
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 will denote the moment of time when the body is nearest the pericenter (in case 
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 denotes the impact with the attraction center moment).
By making the substitution:
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it results 
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It may be easily proved that operator 
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 is a derivation operator. After elementary vectorial and differential computations, Eq (1) becomes:
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where 
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 represent the position vector, respectively the velocity vector of the pericenter related to the attraction center. Their expressions are:
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In case 
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3.1. The Motion on the Elliptic Trajectory
Based on the regularization introduced below, we present a vectorial exact solution to the Cauchy problem (1) (see also [5]-[7]). As the target problem is related to satellites (elliptic motion), the solutions will be given in case 
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. The following algorithm will be applied:
● the solution to Eq (11) is given: the position vector 
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, its magnitude r, the velocity vector 
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● the moment of time 
[image: image49.wmf]P

t

 is computed, depending on the initial conditions;

● starting from Eq (9), an implicit relation between variables t and 
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 is deduced.

Exact solutions to the two other cases (parabolic and hyperbolic motion) are given in [5]. They use the same algorithm and similar results are determined.

As 
[image: image51.wmf]0

h

<

, the solution to the regularized Cauchy problem (11) is:
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It is the equation of an elliptic oscillator in variable 
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. The trajectory is an ellipse with the main vectorial semi axis 
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The magnitude of the position vector:
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The velocity vector:
	
[image: image59.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

[

)

0

sincos, ,

1cos

n

vtEtaEtbtt

eEt

éù

=-+Î+¥

ëû

-

r

rr


	(15)


From Eqs (9) and (14), it results:
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Eq (16) represents Kepler's equation for computing the eccentric anomaly in the elliptic case.
The moment of time 
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The implicit relation between t and 
[image: image64.wmf]t

 results from Eqs (13), (16) and (17):
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4. AN EXACT SOLUTION TO RELATIVE ORBITAL MOTION

We consider two bodies orbiting around the same attraction center F. One of them will be called Chief and the other Deputy. In an inertial reference frame with the origin in the attraction center, their trajectories are conics, and their motion on the trajectories may be determined using the considerations made in Section 3.
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	(b)

	Figure 1: Relative orbital motion


The targeted problem is determining the relative law of motion of the Deputy referred to the Chief.
We will give an exact solution for the case where both satellites have elliptic motions, the case of two Earth satellites, for example. The elements of the Chief motion will be denoted 
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 (the eccentric anomaly) and they are supposed to be known. The elements of the Deputy motion will be denoted
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(the vectorial eccentricity)  and 
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(the eccentric anomaly). At the moment of time 
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, the relative position of the Deputy related to the Chief is described by vector 
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. From the initial conditions we notice that the prime integrals of the Deputy motion are:
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and the elements of the trajectory may be expressed: 
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We define a reference frame that has the origin on the Chief satellite. Unit vector 
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has the orientation of the position vector of the Chief, unit vector 
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 has the orientation of its angular momentum and unit vector 
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 completes a positive oriented base (see Figure 1 (b)). It is known as the LVLH reference frame – Local Vertical Local Horizontal. The expression of vector 
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The parametric expressions of vectors 
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 the Chief is situated in the pericenter of his trajectory (for a more friendly form of the determined expressions) so 
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Taking into account that 
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we can deduce the parametric expressions for 
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 in the LVLH frame.
The law of motion has the parametric equations:
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The velocity has the parametric equations:
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Eqs (25) and (26) represent a replica to Lawden's equations for relative orbital motion with an elliptic reference trajectory. They depend only of the initial conditions for both satellites, at the same moment of time 
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5. CONCLUSIONS

An exact vectorial solution to the relative orbital motion was presented. The most common case, when both satellites have elliptic trajectory, was detailed. The main instrument used here is the vectorial regularization introduced in Section 3, which is a replica for the regularizations introduced by Levi-Civita in [16] (the planar case) and Kustaanheimo in [14] (the spatial case). The non-linear Cauchy problem that describes the Keplerian motion was transformed into a linear one, with exact solution. The result that models the elliptic motion depends on the eccentric anomaly, which is known through Kepler's equation.
The relative motion of a satellite (Deputy) related to another one (Chief) was presented in Section 4. Its main application is Satellite Formation Flying and it is very important for actual and future space missions
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