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Computing the Logarithm of Homogenous Matrices in SE(3)
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Abstract:  We compute the logarithm of the elements of the Lie group SE(3), that leads to elements of the Lie algebra se(3). The approach is purely tensorial, including the case of the in SE(3) for which the rotation component is a symmetric matrix. This is an extension of the logarithm of orthogonal matrices from SO(3), that leads to skew-symmetric matrices in so(3).
We give a Rodrigues-like formula for the map exp:se(3) SE(3), that is surjective, and give a method for computing its multivalued inverse map. The case of matrices with symmetric rotation component has an elegant solution that does not appear in the studies about this problem.

The results have applications in direct and inverse kinematics in robotics.

Keywords:  Lie algebra, Lie group, orthogonal matrices, skew-symmetric matrices, homogenous matrices
1. INTRODUCTION

The problem of determining the screw-axis of a rigid finite motion is fundamental rigid body kinematics. We offer a method for computing the logarithm of homogenous matrices by algebraic and vectorial methods.

Section 2 presents the main results used in this paper. A method for computing the logarithm of an orthogonal proper tensor (of an orthogonal proper matrix) is offered, avoiding the computation of its eigenvalues. The computation of the logarithm of a symmetric orthogonal proper tensor is made by two methods, one algebraic and the other purely vectorial.
Section 3 offers similar methods for computing the logarithm of homogenous matrices. It is made by computing the logarithm of the orthogonal component of a homogenous matrix and elementary vectorial computations. The case when the orthogonal component is symmetric is treated by using the methods introduced in Section 2.
2. PRELIMINARIES

2.1. The exponential of a skew-symmetric tensor
The following denotations will be used:

	
[image: image175.wmf]
	


It is known that 
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Lemma 1 The map:
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is well defined and surjective.
Proof

We firstly prove that 
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It is known that the characteristic polynomial of a skew symmetric tensor 
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where 
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 denotes the norm of vector 
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Also it results:
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	If 
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It is obvious that 
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 is eigenvector also for tensor Q and tensors R and Q have the same characteristic polynomials, so 
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2.2. The logarithm of an orthogonal proper tensor

Lemma 2
(i)
If 
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Proof 

(i) From Eqs (3) and (6) it results: 
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It is known that the exponential of a skew-symmetric tensor is not an injective map, since 
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We are concerned in offering an expression for this multivalued map. We proved that for any 
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From Eq (9) it results:
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If tensor R is not symmetric,
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We remark that 
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 is an infinite set. The general form of the elements of 
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In case tensor R is symmetric, two algorithms are suggested for computing its logarithm: one algebraic and the other vectorial. If 
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. We mention that an algorithm for computing logarithms of symmetric proper orthogonal tensors misses from the Robotic Kinematics textbooks, like [1], [2], [3], [6], [7]. All authors only mention that this is possible using elementary matrix operations like the Jordan method, but an effective computation algorithm is not offered. This is what we do in the next two subsections.
2.2.1. Computing the logarithm of a symmetric orthogonal proper tensor by algebraic methods
The first method offered for computing the logarithm of a skew-symmetric orthogonal proper tensor uses its matrix representation in a positive oriented orthonormate base; let
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be a matrix that satisfies 
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The eigenvalues of R are 
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such as 
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Taking into account that 
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Then 
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2.2.2. Computing the logarithm of a symmetric orthogonal proper tensor by vectorial methods
We start from the affirmation: determining the logarithm of an orthogonal proper tensor R means finding one vector 
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In case 
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Lemma 3 If R is a symmetric orthogonal proper tensor 
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Lemma 3 suggests a simple algorithm of computing the logarithm of a symmetric orthogonal proper tensor, since only the direction of its eigenvector 
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3. THE LOGARITHM OF HOMOGENOUS MATRICES
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The Lie algebra 
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Lemma 4 The map 
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It results immediately that 
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Taking into account that 
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By seeking its possible inverse of the form 
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As the determinant of the system:
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is 
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The proof is finalized. ■
Conclusion:
The logarithm of a homogenous matrix 
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In case tensor R is symmetric, its logarithm may be computed using one of the algorithms offered in Section 2. If tensor R is the unit tensor, then 
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where 
[image: image162.wmf]u

%

 is the skew-symmetric tensor associated to the unit eigenvector of tensor R.
Numerical example
We compute the logarithm of two homogenous matrices, one with a non-symmetric orthogonal component and the other with a symmetric orthogonal component. Only the base solution, when 
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Computing the logarithm of tensor R using Eq (11) and the inverse of tensor T using Eq (27), it results 
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2. Let :
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Computing the logarithm of tensor R using Subsection 2.2.2. and vector 
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 using Eq (29), it results 
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4. CONCLUSIONS

Based on the preliminary tensorial results introduced in Section 2, a method for computing the logarithm of homogenous matrices was offered in Section 3, including the case when the rotation component of the matrix is symmetric. The applications are fundamental in rigid body kinematics: determining the screw and the translation associated to a rigid finite motion when its direct affine isometric map is given.
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