

141

SERVICE ORIENTATION IN DISTRIBUTED

AUTOMATION AND CONTROL SERVICE

Cristiana Voican

University Politechnic of Bucharest,

Email address: voicancristiana@yahoo.com

Abstract
An experimental study shows the feasibility ofservice-oriented architectures
for industrial automation and control systems even with respect to lower,
real-time dependent control functions. For that purpose, general SOA-
guidelines were refined in order to cover the distribution of control functions
between services and the lay-out and management of devicebased sensor,
actor and control services. Particular emphasis was placed on the dynamic
lease-based binding of services which on the one hand provides flexible and
loose coupling of system components but on the other hand has to ensure
reliable communication and cooperation. The guidelines were applied to the
experimental implementation of a manufacturing cell control system using a
real-time version of the Java Runtime Environment.

The Device Profile for Web Services (DPWS) was used as basic
infrastructure technology. Test and evaluation were performed under
distributed simulation of technical processes and devices.

mailto:voicancristiana@yahoo.com�

C. Voican

1.INTRODUCTION

Today, many modern business applications adhere to the paradigms
of service orientation and service oriented architectures in order to
create loosely coupled, modular software systems, easy to maintain
and to extend. In the field of automation and control systems, SOA-
based flexibility is of even more interest, because it contributes to
substantial reductions of installation and setup costs These costs are of
particular importance since manufacturing plants again and again have
to be adapted to new products resulting in changes of the technical
equipment and the process flows performed. Additional
reconfigurations are applied occasionally in the course of repair
measures in order to bypass defect equipment and to avoid expensive
production downtimes.

Despite the desired flexibility, however, there is a needs for stable
and reliable operation phases since the efficiency of the production
equipment usually depends on steady operational conditions. For a
certain manufacturing operation usually an ensemble of suitable
devices, machines and transport equipment is necessary. The members
of the ensemble must initially be configured in harmony with each
other and thereafter be available for a certain minimal period of
operation time, which may only be aborted due to exceptional
circumstances. The members of the ensemble have to be allocated
before configuration, some of them because they can only be used
exclusively, others may be sharable but have to allow for the
additional load.

In the service-oriented setting this means, that a client – which may
be either a control application or a compound service – must be able
to search, find and allocate a suitable ensemble of used services. Since
a used service may already have other obligations, it may not be
disposable and deny a current allocation request.

Then, one member of the planned ensemble fails, and the ensemble
as a whole is currently not useful.

Therefore, the client shall be able to withdraw the other allocation
requests and look for alternative ensembles.

In order to fulfill these functional requirements of temporary and
atomic ensemble allocation we extended the approach of lease-based
allocation by introducing an explicit reservation phase in a way that
reservation and allocation perform a two-phasem commitment.

143

Moreover we transposed the architecture of hierarchical control
systems to the field of service systems using the platform the Device
Profile for Web Services (DPWS) as basic infrastructure technology
supporting the communication between devices via service interfaces
as well as the exploration and binding of services. The application of
the resulting architecture guidelines and the usage of the lease-based
allocation were exemplified by means of a production cell scenario
using a real-time Java Runtime Environment.

In the sequel, we outline DPWS and its application to service-
oriented industrial applications.

2.SERVICE ORIENTED ARCHIECTURES

In SOA, interoperability of different platforms is established

through the definition of common communication protocol and
message exchange standards.

But not only in enterprise domain software service-orientation is a
feasible way of creating flexible software systems, as through the
growth of computing power of embedded devices these paradigms are
also applicable to embedded software solutions.

 Universal Plug’n’Play (UpnP was the first specification of a
service oriented infrastructure to be used in embedded application
scenarios, using SOAP and HTTP as a basic communication layer and
providing mechanisms for service discovery, action invocation and
event based communication schemes.

Its successor, the Devices Profile for Web Services (DPWS) , is
completely based on standardized Web service specifications and
defines a profile (a subset) for the use of Web service technology in
the embedded domain.

2.1.DEVICES PROFILE FOR WEB SERVICES

The Devices Profile for Web Services defines a common subset of

web service based communication patterns for use in embedded
devices. The protocol stack utilizes standardized internet protocols,
namely TCP/IP and UDP (Single- and Multicast). For basic messaging
HTTP and SOAP respectively SOAP-over- UDP are employed.

C. Voican

On top Web service protocols are arranged that deal with service
and device description, discovery, eventing and security. A DPWS
device may host several services, which can be discovered and used
by DPWS clients. The DPWS protocol stack is depicted in Figure 1.

2.2 SOA in Industrial Automation

The emergence of powerful but less power consuming, affordable,

and embedded computing components facilitates the employment of
SOA paradigms even in the world of industrial automation. Currently
a lot of proprietary standards in device control and communication
protocols often prevent the vendors.

 Thus upgrades or extensions of the manufacturing automation
system tend to be costly and time consuming .

The usage of SOA in industrial automation provides a common
ground for interoperability of all devices in a device network.

Moreover an integration of low-level devices and highlevel
enterprise applications (e.g. an ERP system) is possible.

 In the European ITEA SIRENA project the applicability of DPWS
in an industrial automation scenario was demonstrated for the first
time.

Figure 1. DPWS protocol stack

145

3. AUTOMATION AND CONTROL

An industrial control system commonly has a structure as depicted

in Figure 2. This architecture could be divided into three main layers:
sensors and actors, control and management.

The actual technical process is located at the bottom of the control
hierarchy and subsumes all technical lowlevel components involved in
the production process like motors, pushers or drilling machines. The
process is monitored by sensors, collecting data from the involved
resources including e.g. temperature, rpm or the position of work
pieces (indicated by a light-barrier state change).

This information is send via a specialized communication
infrastructure to the process control level and is repeatedly evaluated
by the control algorithm. Based on the sensor information the control
algorithm computes control signals which are in turn send to the
actuators connected to the technical process. Moreover status
information from the process control level is sent to the process
management level.

This may include forwarded sensor values, proinformation and
fault messages. At process management level a human operator
monitors the overall process behavior, adjusts particular parameters
and sends configuration commands to the process control system.
Besides the remote high-level controlling and monitoring of the
technical process, in some occasions (e.g. a severe fault that requires
local intervention and repair) the operator may be forced to directly
intervene with the low-level hardware components via the attached
control pan

4. SERVICE CONTROL ARCHITECTURE

The process control architecture shown in the last paragraph is the
structural basis for the service-oriented architecture presented in this
paper.

The serviceorientation of the devices involved in the technical
process and the attached sensors suggests the use of service-
orientation also on the control and management levels.

The sensors and actuators export their functionality through
defined interfaces which can be used by higher level control services.
Control services may also be layered and arranged in a service

C. Voican

hierarchy. Figure 3 illustrates this architecture: the application process
interacts with the technical process using the supplied control services.

 The control services themselves are acting both as a service
consumer (client role) and service provider (server role) and thus
enable control service layering.

For example, a rotary disk consists of a rotation motor and a motor
for moving the conveyer belt on top of the disk.

Additionally the disk is supplied with sensors, detecting the
location of the work piece currently transported on the conveyer belt
and a sensor to measure the position of the rotary disk itself.

Both, the rotary part and the transportation part are each controlled
by their own control service.

For the control of the overall process of moving a work piece on
the disk, stopping the conveyer, turning the disk to its new position
and finally transporting the work piece away from the rotary table, an
additional control service is provided that uses the control services of
the particular parts of the rotary disk.

' Therefore the control services themselves offer service
functionality to higher level control or management services.

 However, the stacking of control services is constrained by the
real-time requirements of the process, as each new layer of control
implies additional, time consuming

communication between the services.
.

Figure 2 Control system Figure 3. Service hierarchy

147

5. CONCLUSIONS

The services (e.g. sensor or controller) offer different interfaces

which can be categorized using the follow three classes:
•functional purpose
•discovery and description
•service binding

The functional interface offers the functionality of the service, e.g.
a getVariable method for sensor or a setVariable method for actuator
services. The functional service interface of control services offers
high-level methods like drillHole.

The control services comply with the notion of so called function
building blocks (IEC 61499).

 Each building block comprises input and output variables plus
local status variables. The functionality of a particular function block
is defined by the algorithm that is used to compute the outputs by
using the inputs and the local variables.

The discovery interface contains the necessary methods for services
to be able to answer to search requests and to provide data concerning
device type, location and binding address.

Finally, the binding interface subsumes the features for lease based
service binding and reservation.

6. REFERENCES

[1] H. Smit, F. Jammes, “Service-Oriented Paradigms in Industrial

Automation”, IEEE Transactions on Industrial Informatics, Vol. 1,
No. 1, pp. 62-70, 2005.

[2] C. Gray, D. Cheriton, “Leases: an efficient fault-tolerant
mechanism for distributed file cache consistency”, ACM SIGOPS
Operating Systems Review, Vol. 23, Issue 5, pp. 202-210, Dec. 1989.

[3] Universal Plug and Play (UPnP), http://www.upnp.org, 1999.
[4] Devices Profile for Web Services (DPWS),

http://schemas.xmlsoap.org/ws/2006/02/devprof/, 2006.
[5] Service Infrastructure for Real-time Embedded Networked

Applications (SIRENA), http://www.sirena-itea.org, 2006.
[6] Sun Microsystems, Jini, Network Technology,

http://www.sun.com/software/jini, 1999.
[7] Kapsers, Küfner, “Messen – Steuern – Regeln: Elemente der

Automatisierungstechnik”, Vieweg Verlag, 6th Edition, p. 253, 2006.

C. Voican

[8] WS4D.org Java Multi Edition DPWS Stack,
http://www.ws4d.org, 2007.

[9] Sun Java Real-time System 2.0 (Java RTS),
http://java.sun.com/javase/technologies/realtime, 2007.

[10] PROFINET, http://www.profibus.com/pn/, 2007.

