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 EQUIVALENT LINEARIZATION OF NONLINEAR SYSTEMS BY OPTIMIZATION METHOD 

Dumitru D. Nicoara1, Diana Cotoros1 

 1Transilvania University, Brasov, ROMANIA, tnicoara@unitbv.ro 
Abstract : In this paper we present a new method for linearization of nonlinearly systems. The method can be used for nonlinear single or multi-degree-of-freedom-systems (SDOF or MDOF) and also for conservative and non-conservative systems, and for free and steady state vibration problems.
Keywords: nonlinear system, linearization, optimization, vibrations
1. INTRODUCTION 
The real world is, however, generally nonlinear, and the use of linear models is always a source of  approximations. Linearization are often justified by consideration such as: 
· The study of linear system is far easier than that of nonlinear systems and can be  performed by using a set of second-order linear differential equation.
· The linearization of equations of motion allows the obtaining of interesting  information on the behaviour of the nonlinear systems. The behaviour of the systems about an equilibrium position allows assessment of the stability of the equilibrium. 
2. MATHEMATICAL MODELLING
Consider the free vibration of a nonlinear multi-degree-of freedom system (MDFO)
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(1)
The linearization process by optimization method is obtained in next steps:

10.The first step is to find the exact solution, if available, or else one can use numerical techniques (such as Runge-Kutta method, θ-Wilson method or Newmark-β method) to obtain the time response
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 where the inices i and j stand for the number of points selected from the time period T and the degrees of freedom in the system, respectively.
20. In the next step, one assumes an equivalent linear system
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where 
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 are stiffness and damping equivalente matrices, respectively.
The stiffness and the damping parameters are assuned, and the corresponding time history 
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is obtained from the modal analysis of the equivalent system of linear differential equations (2).
30. In the next step we introduce the optimization algorithm. For the general case one can define a vector of parameters 
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 whose components are stiffnes and damping, 
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Defining the error as
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(4)
one defines an objective function as 
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Now one can state the constrained optimization problem as:
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(6)
Such types of problems can be solved using either direct search or gradient optimization methods [5], [10].
Thus the steps involved in this method for the n-degree-of-freedom are:
1. Assume a vector 
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 given by Eq. (2), within the upper and lower limits for the damping and stiffnes parameters.

2. Obtain the time history of each of the degree-of-freedom within a time period using modal analysis of Eq. (2).

3. Calculate V given by Eq. (5).

4. Solve optimization problem given by Eq. (6).

For transient forced vibration response one can always calculate V using equations (4) and (5) and of course 
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must be obtained corresponding to an appropiate forcing functions.
3. COMPARATIVE STUDIES AND APPLICATIONS 
3.1 Comparative studies 
The response of the systems considered is found using:

1. a modified perturbation method [1];
2. weighted mean square method [4];
3. ultrasferical polinomials method [9];

4. optimization method.

The results can be compared to those obtained using the numerical solution.
3.1.1 Weighted mean square method versus optimization method
In the paper by Sinha and Srinivasan (1971) a linearization techniques is presented which yields an approximate period of oscilation T for the problem of free oscilations of conservative systems, guverned by equation
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whith the initial condition as 
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For the case of cubic nonlinearity (Duffing), the nonlinear function in ecuation (7) is given as
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The approximation period of oscilation for the case of cubic non-linearity is found to be 
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where 
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 is recomanded to be used for the most accurate results.
This method of approximating the period of oscillation can be applied to free vibration of a conservative SDOF systems with cubic stiffness
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whit initial conditions
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Using this period of motion obtained for the interval 
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, a linearized equation of motion can be written as 
The response is found using a modifie
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where 
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Using the optimization method of linearization, an approximate linearized function for equation (9) can be written as 

[image: image29.wmf]0

=

+

x

m

k

x

lin

&

&

`









(13)
and the solution becomes
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The linearized stiffness parameter 
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 was found so as to minimize the error between the exact solution and the approximate solution. Table 1 shows the calculated time period of the free vibration of the SDOF system and the value of the objective function. The calculated period is the same for all two methods, but the error V is the least for the optimization method.
Table 1:  Free vibration of a SDOF system
	Parameter
	Weighted Mean Square Method
	Optimization Method

	T (sec)
	0.4239
	0.4239

	V
	0.00218
	0.00064


3.1.1 Ultrasferical polynomials method versus optimization method

Consider a non-linear  non-conservativ system with a mixed type of non-linear damping and a cubic spring subjet to step function excitation
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where 
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An approximate solution of equation (15) are obtained by a generalized averaging technique based on ultrasferical polinomial extension [9], [4] and is given by
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In ecuation (16) the non-dimensional time 
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 is the real root of equation 
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The function 
[image: image39.wmf])

(

t

C

 is given by

[image: image40.wmf]2

1

)

1

(

2

0

2

0

)

1

(

2

0

]

1

(

)

1

(

4

1

[

)

(

2

0

2

0

t

t

t

C

a

C

a

e

C

C

e

C

C

+

-

+

-

-

+

+

=

.







(18)

In optimization method an approximate linearized function for equation (15) is given by
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The general solution to the linearized equation is [8].
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Equation (15) was solved using the Runge-Kutta method. A multi-parameter optimization was used to find the linearized damping constant 
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 and the linearized spring constant 
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 in equation (19), to minimize the error (4) between the Runge-Kutta solution and the approximate solution 
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Table 2 shows the error V calculated for a selected time period time period by the ultrasferical polynomials methodof and the optimization method respectively
Table 2:  Forced vibration of a SDOF system

	Parameter
	Ultrasferical Polynomial Method
	Optimization Method

	T (sec)
	6
	6

	V
	0.001046
	0.001032


4. CONCLUSION
The vibration response of non-linear single-degree-of-freedom (SDOF) or multie-degree-of-freedom (MDOF) whether conservative or non-conservative, free and forced, where formulated as optimization problems and solved. In these formulations, the optimization was based on the minimum error between the exact or numerical solution and an equivalent linear system solution. The resultr where compared with those obtained by other researchers. The results show tat this method is very versatile and relatively more accurate that the existing linearization methods.
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