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ON THE OPTIMAL CONTROL OF QUADRATIC FUNCTIONALS
FOR AFFINE NILPOTENT SYSTEMS

M. Popescu1, 

1 Statistical and Applied Mathematics Institute of the Romanian Academy, Bucharest, ROMANIA,  mpop@ima.ro
Abstract The minimization control problem of quadratic functionals for he class of affine nonlinear systems with the hypothesis of nilpotent associated Lie algebra is analyzed. The optimal control corresponding to the first-, second- and third-order nilpotent operator is determined. In this paper we have considered the minimum fuel problem for the multiinput control and for a scalar input bilinear system for such systems. For the multiinput system, usually an analytic closed-form solution for the optimal control 
[image: image79.wmf]is not possible and it is necessary to use numerical integration for the set of m nonlinear coupled second order differential eqations. The optimal control of bilinear systems is obtained by considering the Lie algebra generated by the system matrices. It should be noted that we have obtained an open-lop control depending on the initial value of the state 
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1. INTRODUCTION 

Optimal control theory offers modern methods regarding the control of systems, and plays a significant role in the analysis of the linear control characterizing quadratic linear regulators and also the Gaussian quadratic linear control [9], [10]. The use of optimal control in the class of linear systems permits a substantial reduction of the computations determining the laws of optimal control. Moreover, it is an efficient method for solving nonlinear optimal control problems [2]. The Lie brackets generated by the fields of vectors defining the nonlinear system represent a remarkable mathematical tool for the control of affine systems [7, 8, 9, 10, 11].

Optimal control of bilinear systems has been considered by Tzafestas et al. (1984) and by Banks and Yew (1985) - in the latter case the linear quadratic regulator problem is extended to the bilinear quadratic regulator problem.

H. Bourdache-Siguerdinljane [3] applied the method of Lie algebras to the study of the optimal control regulation of satellites. In [1], S. Banks and M. Yew studied the optimal control of energy consumption minimization for a class of bilinear systems and J. S. Liu et al. [6] generalized this result to a the class of affine nonlinear systems.

The objective of this paper is to obtain optimal controls for the general class of quadratic functionals with applications in minimum fuel control for affine nonlinear systems and bilinear systems..

2. THE PROBLEM OF OPTIMAL CONTROL
Let us consider the class of affine nonlinear dynamic control
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where 
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. The control problem is: find the optimal control functions 
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subject to differential restrictions represented by the dynamic systems (1), in which 
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Let us associate to the nonlinear systems (1) the Lie L algebra generated by the systems of the field of vectors
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We shall use the notations
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where 
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The Lie algebra is nilpotent, if there is a positive integer k such that 
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The complex structure of the system (1) creates difficulties in solving the optimal control problems and makes mandatory their approximation by the systems with a simple structure. H. Hermes [5] and A. Bresnan [4] show that, under certain conditions, the affine system (1) with, or without the passivity of the 
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 term, may be approximated locally by a nilpotent system of the same form. The nonlinear system considered here is nilpotent if the associated Lie algebra L is nilpotent.


The Hamiltonian associated to the optimal problem is:
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where 
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The Hamiltonian system associated is:


[image: image24.wmf](

)

(

)

(

)

(

)

(

)

(

)

x

t

x

t

p

Qx

p

gu

f

x

p

x

t

x

u

x

g

x

f

f

f

T

¶

F

¶

-

=

+

+

¶

¶

-

=

=

+

=

,

)

)

(

0

0

&

&

x







(8)
with 
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where 
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LEMMA 1  Let Y be a vector and let p be the adjoint optimal vector. Then,
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The time derivative is calculated along the trajectory of the system.

Lemma 1, Proposition 1 and Corollary 1 have been proved by M. Popescu in Nonlinear Analysis [9] .

Substituting the optimal control 
[image: image32.wmf]*

u

 in (7), the optimal Hamiltonian is 
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PROPOSITION 1. The necessary conditions of optimality for 
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Hence, the properties of the optimal control can be expressed as
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In the following we consider affine non-linear systems with a nilpotent structure.

3. OPTIMAL CONTROL FOR NILPOTENT OPERATORS
COROLLARY 1. If L satisfies the nilpotent conditions
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for some positive integer k, then it results that for any vector field 
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The following three cases are important:

Case 1 (commutative, 
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In this case one has
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As the field of vectors is 
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The relation (16) express the commutativity of the operations defining the Lie algebras.

Using Corollary 1, the expression of the optimal control becomes
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The constants for which the functional 
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Case 2 (
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In this case 
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After some calculations , Eq. (19) becomes
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Using Corrolary 1, it results
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The optimal control 
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 is represented by the solution of the differential system (21).

Case 3 (
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The optimality conditions (11) becomes
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We have 
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Therefore
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From Corollary 1 we can write
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The optimal control 
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 can be calculated by numerical integration of the non-linear differential system 
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The third fourth and sixth terms from the right side of (26) characterize the nilpotent structure of the non-linear systems considered. 

For 
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The results regarding the minimization of the quadratic functionals are used in solving some problems of optimum representing the minimum energy criterion in the regulator design. These cases corresponds to the 
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4. CONCLUSION
We have considered the optimal control problem for the class of affine nonlinear systems under investigation is such that the Lie algebra generated by the system vector fields is nilpotent. The key for optimal control 
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. These equations play an important role in obtaining the open loop optimal control 
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at least for k = 1,2,3 which were studied. The optimal control determination of nonlinear system with a nilpotent structure minimizing the quadratic functionals generalizes the results of J. S. Liu, K. Yuan, W. S. Lin [6], respectively S. P. Banks, M. K. Yew [1] regarding the energy minimization of the affine nonlinear and bilinear systems.
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