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Abstract. This paper is concerned with the nonlinear theory of dipolar, porous and
elastic solids. Within this theory we obtain, by using the theory of Langenbach, some
existence and uniqueness results.

1. Introduction

I.Beju and many other authors have benn establish some existence and uniqueness the-
orems in the nonlinear classical theory of elastic bodies.

Regarding the polar elastic bodies, we can enumerate the paper [1], where Eringen
and Suhubi introduced the theory of micrioelastic solids. Also, in [2] Eringen developed
the theory of micromorphic continua. The theory of multipolar continuum was given by
Green and Rivlin in [3]. A review of the field and further developments where recorded
by Eringen and Kadafar in [4].

The concept of poros material was introduced by Cowin and Nunziato, in the context
of classical theory of Elasticity, in the paper [5]. In this paper and also in the paper [6]
of Goodman and Cowin, the authors introduce an additional degree of freedom in order
to develope the mechanical behavior of porous solids in which the matrix material is
elastic and the interstices are voids material.

The basic premise underling this theory is the concept of a material for which the
bulk density is written as the product of two fields, the matrix material density field
and the volume fraction field.

The intended applications of this theory are to geological materials like rocks and
soil and to manufactured porous materials, like ceramics and pressed powders.

In the present paper we restrict to isothermal processes. Our intention is to extend
the result of Beju established in the classical theory of Elasticity. To obtain these results
we must make certain assumptions on the material response relating the convexity of
internal energy to not be incompatible with the principle of objectivity.
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2. Notations and basic equations

Consider that a bounded regionB of three-dimensional Euclidian spaceR3 is occupied by
a poros micropolar body in mechanical equilibrium refered to the reference configuration
and a fixed system of rectangular Cartesian axex. Let ∂B be the boudary of the domain
B . With B̄ we denote the closure of B. Suppose ∂B sufficiently smooth surface such
that we can the divergence theorem and Friedrich’s inequality.

Letters in bold face stand for vector fields. The components of a vector v are denoted
by vi The italic indices will always assume the values 1, 2, 3, whereas Greek indices will
range over the value 1,2. The Einstein convention regarding the summation on repeated
indices is implied. A comma followed by a subscript denotes partial differentiation with
respect to the spatial corresponding Cartesian coordinates.

Also, the spatial argument of a function will be omitted when there is no likelihood
of confusion.

As usual, we shall denote (XK) the material coordinates of a typical particle and
(xi) the spatial coordinates of the same particle and we have:

xi = xi(XK), XK ∈ B̄. (1)

Suppose the continuous differentiability of the functions xi with respect to each of the
variables XK , as many times is required. Also, we assume that

det

(
∂xi

∂XK

)
> 0. (2)

As in the paper [7] of Truesdell and Noll, we introduce the following additional kinematic
variables

xiA = xiA(XK), XK ∈ B̄, (3)

with the property
det (xiA) 6= 0. (4)

This is to characterize the microstructure of the dipolar bodies. To characterize the
voids of material we consider that the bulk density % of material is the product of two
fields, the density field of matrix material γ and the volum fraction ν, i.e.

% = γν (5)

and this relation also holds for the reference configuration:

%0 = γ0ν0.

In this way, the deformation of a dipolar body with voids is characterized by the
following independent kinematic variables:

xi = xi(XK), xiA = xiA(XK), ν = ν(XK), XK ∈ B̄. (6)
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Using the known procedure of Green and Rivlin, it is easy to obtain that the equa-
tions of the equlibrium theory can by written in the following form:

TKi,K + %0Fi = 0,

SLiK,L − SiK + %0GiK = 0, (7)

HK,K + g + %0L = 0.

In these equations we have used the following notations:
- %0 - the constant mass density (in the reference configuration),
- Fi - the body force,
- GiK - the components of the dipolar body force,
- L - the extrinsic equilibrated body force,
- g - the intrinsic equilibrated body force,
- TKi - the first Piola-Kirchhoff stress tensor,
- SLiK , SiK - the dipolar stress tensors,
- HK - the components of the equilibrated stress vector associated with surface in

the domain B which where oroginally coordinate planes perpendicular to the XK- axes
through the point (XK) measured per unit area of these planes.

In the context of the nonlinear theory of dipolar bodies with voids, the consitutive
equations are:

σ = σ (xi,K , xiA, xiK,K , ν, ν,K) ,

TKi =
∂σ

∂xi,K

, SLiK =
∂σ

∂xiK,L

, SiK =
∂σ

∂xi,K

, HK =
∂σ

∂ν,K

, g =
∂σ

∂ν
, (8)

where σ is the internal energy density, considered as a smooth function.
In all what follows, we consider a materially homogeneous body.

We shall denote by ui and ϕij the components of the displacement field and of the
dipolar displacement field, respectively. As it is well known, we have:

ui = xi − δiKXK , ϕij = δiKxjK − δiKδjNXKN ,

where δiK is the Kronecker symbol and XKN is the value of xiA in the reference state.
To the equation of equilibrium (7) we add the following boundary conditions:

ui = ũi, ϕij = ϕ̃ij, ν = ν̃ on ∂B, (9)

where ũi, ϕ̃i and ν̃ are prescribed functions.
By summarizing, the boundary-value problem in the context of dipolar bodies with voids
consists in finding the functions ui, ϕij and ν which satisfy the equations (7) and (8) in
B and the boundary conditions (9) on ∂B.
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3. Basic resuls

In the begining of this section we formulate some results due to Langenbach which will
be used in order to obtain the existenxe and uniqueness results in our context.

Consider a bounded domain Ω in n- dimensional Euclidian space Rn. We denote by
∂Ω the boundary of Ω and consider this surface be sufficiently smooth such that we can
apply the divergence theorem. By H(Ω) we denote a Hilbert space on Ω.

Let T be an operator T : D(T ) → H(Ω), where D(T ) ⊂ H(Ω) is the effective domain
of the operator T and is a linear subset, dense in H(Ω). Suppose that the operator T
has a linear Gateaux differential on the set ω ⊂ D(T ), that is, there exists an operator

(DT ) : ω → L(D(T ), H(Ω)),

such that

lim
t→0

1

t
[T (x+ th)− T (x)] = (DT )(x)h, x ∈ ω, h ∈ D(T ).

Here, as usual, we have denoted by L(D(T ), H(Ω) the set of all linear operators defined
on D(T ), having the values in the Hilbert space H(Ω).
The conection between T and (DT ) is given by

Tx− Tx0 =

t∫
0

(DT ) (x0 + τ (x− x0)) (x− x0) dτ.

We remember that the operator T is called monotone if it satifies the relation:

〈Tu− Tv, u− v〉 ≥ 0, ∀u, v ∈ D(T ),

and T is a strictly monotone operator if it is monotone and, in addition, satifies the
relation:

〈Tu− Tv, u− v〉 = 0, ⇔ u = v.

Now, we consider the operatorial equation:

Tu = f, (10)

with the linear and homogeneous boundary-value conditions:

Liu = 0, i = 1,m. (11)

Consider the set D0 defined by:

D0 = {u ∈ D(T ) : Liu = 0} .

The following theorem allows us to associate a variational problem with our boundary-
value problem formulated in Section 2.

Theorem 1. Consider satisfied the following five conditions:
- 1) D0(T ) and D(T ) are linear sets and D0(T ) is dense in the Hilbert space H(Ω);
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- 2) the operator T has linear Gateaux differential for all u, h ∈ D(T ) and the
mapping (DT )(u)h is continuous with respect to u, the value (DT )(u)h belonging to a
two-dimensional hyperplane which contains the point u;

- 3) the operator T satisfies the condition:

T (0) = 0;

- 4) for all u ∈ D(T ), h, g ∈ D0(T ), we have:

〈(DT )(u)h, g〉 = 〈(DT )(u)g, h〉

- 5) for all u ∈ D(T ), h ∈ D0(T ), h 6= 0, we have:

〈(DT )(u)h, h〉 > 0.

Then we have:
- i) if there exists a solution u0 ∈ D0(T ) of the equation (10), it is unique and attains

on D0(T ) the minimum of the functional

Φ(u) =

t∫
0

(T (τu), u) dτ − (f, u), (12)

where f ∈ H(Ω);
- ii) conversely, if an element of D0(T ) attains the minimum of the functional de-

fined in (12), then this element is a solution of the equation (10).

The following theorem has also proved by Langenbach and assures the conditions for
the existence and also, for the uniqueness of a generalized solution for the boundary-
value problem (10), (11).

Theorem 2. If we suppose that

〈(DT )(u)h, h〉 ≥ c|h|2, u ∈ D(T ), h ∈ D0(T ), c = const., c > 0,

then:
- i) the functional (12) is bounded below on D0(T );
- ii) the functional (12) is strictly convex on D0(T );
- iii) any minimizing sequence of the functional (12) is convergent in H(Ω).

We remember that the limit of a minimizing sequence of the functional (12) is called
generalized solution of the boundary-value problem (10), (11).
Langenbach has proved that the generalized solution of the problem (10), (11) is unique.

Theorem 3. We assume that there exists an element u0 ∈ D0(T ) such that

〈(DT )(u)h, h〉 ≥ c1 〈(DT )(u0)h, h〉 ≥ c2|h|2,
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where c1 and c2 are positive constants.
Then the generalized solution of the boundary-value problem (10), (11) is an element of
the energetic space of the linear operator (DT )(u0).

In the following we shall use these theorems to charaterize our above boundary-value
problem (7), (8), (9). The equationS (7) can be rewritten in the following form:(

∂σ

∂ui,K

)
,K

= −%0Fi,

δjK

(
∂σ

∂ϕij,L

)
,L

− δjK
∂σ

∂ϕij

= −%0GiK , (13)(
∂σ

∂ν,K

)
,K

+
∂σ

∂ν
= −%0L.

The ordered triplets U = (ui, ϕij, ν) are elements of the real vector space

V(13) = V(3)

⊕
V(9)

⊕
V(1).

Of course, the space V(13) is of 13-dimension and is defined on B̄. We now introduce the
notations

MiU = −
(

∂σ

∂ui,K

)
,K

,

NiKU = −δjK
(

∂σ

∂ϕij,L

)
,L

− δjK
∂σ

∂ϕij

, (14)

P0U = −
(
∂σ

∂ν,K

)
,K

− ∂σ

∂ν

and

MU = (MiU, NiKU, P0U) ,

F = (%0Fi, %0GiK , %0L) (15)

Taking into account the notations (14) and (15), the system of equations (13) can be
written in the form:

MU = F, on B. (16)

For the sake of simplicity, we denote by V the space V(13). Let V ∈ V, V = (vi, ψij, v)
such that:

vi = ūi, ψij = ϕ̄ij, v = ν̄, on ∂B,

where ūi, ϕ̄i and ν̄ are prescribed functions defined in (9).
Let us define W, AW and F by

W = U−V, F = F−MV,

AW = (AiW, BiKW, C0W) = M(W + V)−MV (17)
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Then the boundary-value problem (7), (8), (9) received the form:

AW = F , on B, (18)

W = 0, on ∂B. (19)

Let L2(B) be the Hilbert space of all vector fields U = (ui, ϕij, ν) whose components
are square-integrable on B, with the norm generated by the scalar product:

〈U, V〉 =
∫
B

(uivi + ϕijψij + νv) dV

where U = (ui, ϕij, ν) and V = (vi, ψij, v).
We denote by W 2

0 (B) the Sobolev space of all elements from L2(B) belonging to C2(B)
which satisfy the boundary condition (19). This space will be the domain of definition
for the operator A defined in (17), i.e.

A : W 2
0 (B) → L2(B).

Also, we suppose that F ∈ L2(B).

Theorem 4. We assume that the function σ is of class C2 with respect to each variables
ui,K , ϕij, ϕis,M , ν, ν,N and satisfies the inequality:

Γ(W) =
∫
B

(
∂2σ

∂ui,K∂uj,M

fi,Kfj,M + 2
∂2σ

∂ui,K∂ϕsj

fi,Kgsj+

+2
∂2σ

∂ui,K∂ϕsj,M

fi,Kgsj,M + 2
∂2σ

∂ui,K∂ν
fi,Kh+ 2

∂2σ

∂ui,K∂ν,M

fi,Kh,M +

+
∂2σ

∂ϕis,K∂ϕrj,M

gis,Kgrj,M + 2
∂2σ

∂ϕis,K∂ϕrj

gis,Kgrj + 2
∂2σ

∂ϕis,K∂ν
gis,Kh+ (20)

+2
∂2σ

∂ϕis,K∂ν,M

gis,Kh,M +
∂2σ

∂ϕis∂ϕjr

gisgjr + 2
∂2σ

∂ϕis∂ν
gish+ 2

∂2σ

∂ϕis∂ν,K

gish,K +

+
∂2σ

∂ν∂ν
h2 +

∂2σ

∂ν,K∂ν,M

h,Kh,M + 2
∂2σ

∂ν∂ν,K

hh,K

)
dv > 0,

for all W = (ui, ϕij, ν), G = (fi, gij, h), G 6= 0 which possess the partial derivatives
of first order with respect to the variable XK.
Then we have:

- i) if there exists a solution W ∈ W 2
0 (B) of the equation (18), it is unique and

attains on W 2
0 (B) the minimum of the functional:

Φ(W) =

t∫
0

〈A(τW, W〉 dτ − 〈F , W〉 ; (21)

- ii) conversely, if the minimum of the functional (21), on the space W 2
0 (B), is at-

tains in an element W0 ∈ W 2
0 (B), then this element is a solution of the equation (18).
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Proof. The two assertions of the theorem will be proved if we show that the hy-
potheses of Theorem 1 are satisfied.
So, we have:

- 1) as it is known, W 2
0 (B) is a linear set, dense in L2(B) (see, for instance Minty

[12]);
- 2) for all W, G ∈ W 2

0 (B), the operator A defined in (17) has a linear Gateaux
differential given by:

(DAi) (W)G = −
(

∂2σ

∂ui,K∂uj,M

fj,M +
∂2σ

∂ui,K∂ϕjs

gjs+

+
∂2σ

∂ui,K∂ϕjs,M

gjs,M +
∂2σ

∂ui,K∂ν
h+

∂2σ

∂ui,K∂ν,M

h,M

)
,K

,

(DBij) (W)G = −
(

∂2σ

∂ϕij,K∂us,M

fs,M +
∂2σ

∂ϕij,K∂ϕrs

grs+

+
∂2σ

∂ϕij,K∂ϕrs,M

grs,M +
∂2σ

∂ϕij,K∂ν
h+

∂2σ

∂ϕij,K∂ν,M

h,M

)
,K

+

+
∂2σ

∂ϕij∂us,K

fs,K +
∂2σ

∂ϕij∂ϕrs

grs +
∂2σ

∂ϕij∂ϕrs,K

grs,K +
∂2σ

∂ϕij∂ν
h+

∂2σ

∂ϕij∂ν,K

h,K ,

(DC0) (W)G = −
(

∂2σ

∂ν,K∂ui,M

fi,M +
∂2σ

∂ν,K∂ϕij

gij+

+
∂2σ

∂ν,K∂ϕij,M

gij,M +
∂2σ

∂ν,K∂ν
h+

∂2σ

∂ν,K∂ν,M

h,M

)
,K

+

+
∂2σ

∂ν∂ui,K

fi,K +
∂2σ

∂ν∂ϕij

gij +
∂2σ

∂ν∂ϕij,K

gij,K +
∂2σ

∂ν∂ν
h+

∂2σ

∂ν∂ν,K

h,K .

It is easy to verify that for a given G, the mapping (DA)(W)G is continuous with
respect to W in every two-dimensional hyperplane which contains the point W;

- 3) this hypothesis is satisfied because from (17) we deduce that A(0) = 0;
- 4) for W, G, H ∈ W 2

0 (B), provided that H = (hi, χij, µ) possess the partial
derivatives of first order with respect to the variable XK , we get

〈(DA)(W)G, H〉 =
∫
B

[(DAi) (W)Ghi + (DBij) (W)Gχij + (DC0) (W)Gµ] dV =

=
∫
B

[(DAi) (W)Hfi + (DBij) (W)Hgij + (DC0) (W)Hh] dV = (22)

= 〈(DA)(W)H, G〉

- 5) Taking into account the inequality (20) and the equality (22), we deduce that:

〈(DA)(W)H, H〉 > 0, ∀W, H ∈ W 2
0 (B), H 6= 0,
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that is, the last hypothesis of Theorem 1 is satisfied and the dmonstration of the theo-
rem is complete.

Theorem 5. We suppose that the inequality (20) holds. Then the boundary-value
problem (7), (8), (9) has at most one solution U ∈ C0(B).

Proof. The demonstration of this theorem will be based on the following result (see,
for instance, the paper [12] of Minty):

If the domain D(T ) of the operator T is convex, then a sufficient condition for T to
be strictly monotone on D(T ) is that the derivative

d

dt
[〈T (U + tG), G〉]t=0

exists and is positive for all U, V ∈ D(T ), G = V −V, G 6= 0.

In view of this result, consider Z the set of all vector fields U = (ui, ϕij, ν) that
satisfy the boundary conditions (9).
We shall prove that the operator M defined by (14) and (15) is strictly monotone on Z.
Let U, V ∈ Z, 0 ≤ t ≤ 1. It is easy to verify that

tU + (1− t)V ∈ Z.

Then, by using the inequality (20) and the equality (22), we can prove that

d

dt
[〈M(U + tG), G〉]t=0 =

=

 d
dt

∫
B

[Mi(U + tG)fi +Nij(U + tG)gij + P0(U + tG)h] dV


t=0

=

= 〈(DA)(U)G, G〉 ,

for all U, V ∈ Z, G = V −U, G 6= 0 on ∂B.
Therefore, we deduce that the operator M is strictly monotone on the set Z. As a
consequence, if U1 and U2 are two solutions of our problem, then by direct calculations
we get:

〈MU1 −MU2, U1 −U2〉 = 〈0, U1 −U2〉 = 0,

such that we deduce that U1 = U2, according to the definition of a strictly monotone
operator.

Following the proof of Theorem 2, we immediately obtain the next results.

Theorem 6. We suppose that the hypotheses of Theorem 4 are satisfied. Moreover,
assume that:

Γ(W) > c
∫
B

(
fifi + gijgij + h2

)
dV, (23)
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for W = (ui, ϕij, ν) , G = (fi, gij, h) having the partial derivatives of first order with
respect to the variable XK, and c = constant, c > 0.
Then we have:

a) the functional (21) is bounded below on W 2
0 (B);

b) the functional (21) is strictly convex on W 2
0 (B);

c) any minimizing sequence of the functional (21) is convergent in L2(B) and the
limit is generalized solution of the problem (18), (19);

d) this generalized solution is unique.

Regarding to the inequality (23) we make the following observations. Suppose there ex-
ists a positive constant c1 such that for all W = (ui, ϕij, ν), G = (fi, gij, h) ∈ W 2

0 (B),
we have

∂2σ

∂ui,K∂uj,M

fi,Kfj,M + 2
∂2σ

∂ui,K∂ϕjs i,K

gj + 2
∂2σ

∂ui,K∂ϕj,M

fi,Kgj,M +

+2
∂2σ

∂ui,K∂ν
fi,Kh+ 2

∂2σ

∂ui,K∂ν,M

fi,Kh,M +
∂2σ

∂ϕi,K∂ϕj,M

gi,Kgj,M +

+2
∂2σ

∂ϕi,K∂ϕj

gi,Kgj + 2
∂2σ

∂ϕi,K∂ν
gi,Kh+

∂2σ

∂ϕi,K∂ν,M

gi,Kh,M + (24)

+
∂2σ

∂ϕi∂ϕj

gigj + 2
∂2σ

∂ϕi∂ν
gih+ 2

∂2σ

∂ϕi∂ν,K

gih,K +

+
∂2σ

∂ν∂ν
h2 +

∂2σ

∂ν,K∂ν,M

h,Kh,M + 2
∂2σ

∂ν∂ν,K

hh,K >

> c1
(
fi,Kfi,K + gigi + gi,Kgi,K + hKhK + h2

)
.

On the other hand, by using the Friedrich’s inequality, we deduce that there exists a
real constant c2 such that:∫

B

(
fi,Kfi,K + gijgij + gij,Kgij,K + hKhK + h2

)
dV ≥

≥ c2

∫
B

(
fifi + gijgij + h2

)
dV. (25)

Finally, taking into account the inequalities (24) and (25) we deduce that the condition
(23) is satisfied.
As a consequence of Theorem 3, it is easy to obtain the result from the following theorem.

Theorem 7. We assume that there exists W0 ∈ W 2
0 (B) and two positive constants

c1 and c2 such that:

T (W) ≥ c1T (W0) ≥ c2

∫
B

(
fifi + gijgij + h2

)
dV,

for all W, G ∈ W 2
0 (B), G = (fi, gij, h).

Then the generalized solution of the boundary-value problem (18), (19) belogs to the en-
ergetic space of the linear operator (DA)(W0).
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