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Abstract: In the study of a multi-bodies system, the elasticity of the components can be large enough so that the dynamic response can be not only quantitative, but also qualitative, different. For this reason, in some applications, particularly in the field of robotics and high-speed vehicles, is necessary to consider the elasticity of the elements and to use correspondent models. To study such systems is necessary to use numerical methods and the finite element methods (FEM) remains one of the most important tools. In the paper are established the motion equations for a general multi-bodies system with elastic elements being in a three-dimensional motion and are analyzed the influence of the Coriolis terms.
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1. DINAMICS OF THE MULTIBODY SISTEMS
In the following will be established the motion equations for an elastic finite element with a general motion together with an element of the system. The type of the shape function is determined by the type of the finite element. We will consider that the small deformations will not affect the general, rigid motion of the system. 

The continuous displacement field 
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where the elements of matrix [N] (the shape functions), are determined by the type of the finite element used. We consider that, for the all elements of the system, the field of the velocities and of the accelerations are known. We refer the finite element to the local coordinate system Oxyz, mobile, and having a general motion with the part of system considered. We note with  
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 the velocity and with 
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 the acceleration of the origin of the local coordinate system. The motion of the whole system is refer to the general coordinate system O’XYZ. By  [ R ] is denoted the rotation matrix. If we apply the Lagrange’s equations after some algebraic operations we obtain the motion equations for a single finite element under the compact form[1],[4]: 
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where  
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 represent the angular velocity and 
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 the angular acceleration with the components in the local coordinate system.

These motion equations are referred to the local coordinate system and the nodal displacement vector  
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 and the nodal force vector 
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 are express in the same coordinate system. The motion equations are true for the instantaneous position of the system. We consider that the system is „frozen” for the moment considered. 

2. LIAISON FORCES ELIMINATING
The unknowns in the elasto-dynamic analysis of a mechanical system with liaisons are the nodal displacements and the liaison forces. Generally, the relations between the first order derivatives of the nodal displacements can be expressed by the linear formulas: 
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where by 
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we have noted the nodal displacement vector and by 
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 the nodal independent displacements. By differentiation (14)  we obtain:
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(10)

The transformation relations between the displacements expressed in the global fix coordinate system 
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and the displacements expressed in the local mobile coordinate system 
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(11)

where index e denote the e-th element.

For a single finite element that belong to an elastic component of the system that has a general three-dimensional rigid motion with the angular velocity 
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  and the angular acceleration 
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 (or 
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 and 
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 in the mobile co-ordinate system) we consider the motion equations obtained by the relation  (11). For the other cases the procedures are the same.

          The equations are expressed in the local mobile reference system. If we write these equations in the global fix coordinate system, they keep there form: 
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          We will note in the following:
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and we can obtain finally the motion equations for the whole structure, referred to the global coordinate system, under the form:
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          If we take into account the relations (18) and (20) we can write:
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It can be shown that the work of the liaison forces for system can be written:
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But the work due to the liaison forces is null for an ideal system and the independence of the nodal coordinates q offer the relation:
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(16)

that is the basic relation in the following.

The liaison between finite elements is realized by the nodes where the displacements can be equal or can be other type of functional relations between these. When two finite elements belong to two different elements (bodies) the liaison realized by node can imply relations more complicated between nodal displacement and their derivatives. 

The system of differential equations obtained after the assembling procedures is nonlinear, the matrix of the left term depending on the configuration of the multi-body system. These equations can be writing under the form:
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where 
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3. THE INFLUENCE OF THE CORIOLIS TERMS
The matrix 
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c

 is skew-symmetric.  If we want to obtain the energy balance by integration, we obtain that the variation of energy due to the term skew-symmetric is null. Consequently,  the Coriolis term only transfer the energy between the independent coordinates of the system and had no role in the dissipation of the energy. 

If we consider now a motion mode on the form:
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and we introduce in the motion equations, where the forces are considered null, we obtain:
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If we pre-multiply with 
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 we obtain:
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We have considered that:
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because [c] and  
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 are skew-symmetric. It results:
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This relation can not express, in a direct way,  the influence of the matrix [c]  in the eigen-values calculus, but this influence is present by the eigenvectors 
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.The term 
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 has an influence on the values of the eigen-values. Some of the eigen-values increase and the other decrease. This variation is presented, extended, in the paper. Between these values there exist some interesting relations.

REFERENCES

[1]. Vlase, S. Elastodynamische Analyse der Mechanischen Systeme durch die Methode der Finiten Elemente. Bul. Univ. Brasov,  p.1-6, 1985.

[2]. Vlase, S. A Method of Eliminating Lagrangean Multipliers from the Equations of Motion of Interconnected Mechanical Systems. Journal of Applied Mechanics, ASME trans., vol.54, nr.1, 1987. 

[3]. Vlase, S. Modeling of Multibody Systems with Elastic Elements. Zwischenbericht. ZB-86, Technische Universität, Sttutgart., 1994.

[4]. Vlase, S. Finite Element Analysis of the Planar Mechanisms: Numerical Aspects. Applied Mechanics - 4. Elsevier, 90-100, 1992.

100
101

[image: image49.emf][image: image50.emf]_1206172329.unknown

_1206172370.unknown

_1206172412.unknown

_1206172539.unknown

_1206172557.unknown

_1206172569.unknown

_1206172579.unknown

_1206172584.unknown

_1206172561.unknown

_1206172547.unknown

_1206172552.unknown

_1206172543.unknown

_1206172425.unknown

_1206172532.unknown

_1206172416.unknown

_1206172396.unknown

_1206172405.unknown

_1206172408.unknown

_1206172400.unknown

_1206172378.unknown

_1206172383.unknown

_1206172374.unknown

_1206172350.unknown

_1206172361.unknown

_1206172365.unknown

_1206172356.unknown

_1206172342.unknown

_1206172346.unknown

_1206172338.unknown

_1206172228.unknown

_1206172310.unknown

_1206172321.unknown

_1206172325.unknown

_1206172317.unknown

_1206172301.unknown

_1206172307.unknown

_1206172231.unknown

_1135267283.unknown

_1135267319.unknown

_1135267330.unknown

_1143568987.unknown

_1143569003.unknown

_1135267325.unknown

_1135267314.unknown

_1135267267.unknown

_1135267277.unknown

_1135267262.unknown

_1127846600.unknown

